Design services for amendments of the Main Design for the Central Terminal Building of the Zadar New Port Project

Executed by: INSTITUT IGH, d.d.
Zavod za stručni nadzor i vođenje projekata
10000 Zagreb, Janka Rakuše 1

Building: FERRY TERMINAL ZADAR - GAŽENICA

Zagreb, may 2015.
1) JUSTIFICATION OF PROJECTS

The client intends to carry out the central terminal building Gaženica other than those for which he was issued a building permit. Because changing conditions at the location it must be obtained amendment location permit in the area covered by a valid building permit Building permit I.5 Central terminal building klasse: UP / I-361-03 / 11-01 / 192, reg 531-04-1-2-1-372-12-17, Zagreb, 25.7.2012..

This Amending the Preliminary Design retained buildings from the original project other than specified by this project:
- Build Central terminal building with parking, crossing all the associated infrastructure con-nections to the existing built infrastructure system, with respect to the borders of the Building Permit I.5 central terminal building (class: UP / I-361-03 / 11-01 / 192, reg 531-04-1-2-1-372-12-17, of 07.25.2012., Zagreb);
- Remove the footbridge from the commercial center of the headquarters building;
- Shorten the skyway the international terminal for cruise ships;
- Build canopies over the existing points of sale and control of tickets for open market operations;
- Build a canopy for a detailed review of passenger cars with the premises of the border crossing of claim MUP and Customs;
- Temporary power connectors on the SS 1 and SS 2 designed as permanent connections;
- Connect the central building of the public gas network that has been built;
- Build a temporary parking lot on the site planned for the construction of the shopping center which is a function of the central building to the moment of issuing building permits for the commercial center;
- Build a parking lot in the area of the coastal part of the port after the issuance of a building permit for a commercial center and the removal of a temporary parking lot on the site of the shopping center.

2) INPUT DATA FOR THE DESIGN OF THE BUILDING

Domestic ferry traffic
For domestic ferry traffic traffic forecast for peak periods of domestic ferry traffic for Phase 1 (until 2025) and phase 2 (2025 and after) provides:
- 2 disembarkation / embarkation simultaneously
- 100 pedestrian passengers / boat = 200 pedestrian passengers

International ferry traffic
Presumed number of passengers pedestrians for international ferry traffic in the peak peri-od:
For phase 1 (up to 2025):
- 1 unloading / loading
- 500 pedestrian passengers
For phase 2 (2025 and following):
- 2 unloading / loading: first in time T, and the other in T + 1 hour
- 500 passengers walking / hiking ship = 1,000 passengers

Cruisers (Transit and / or Home Porting)
For dimensioning of the central building has been assumed number of passengers in the cruiser traffic in the peak period:
For phase 1 (up to 2025):
- 1 iskcaj / medium boarding a large ship
- 1,200 "home port" of passengers
For phase 2 (2025 and following):
- 1 unloading / loading a large ship
- 2,400 "home port" of passengers

The obligation of ther Operator is to organize the timetable and the use of international ferry terminal and cruise ship traffic in a way that was never possible at the same time landing with international ferry
Design services for amendments of the Main Design Institut IGH, d.d. for the Central Terminal Building of the Zadar New Port Project

3) FUNCTIONAL ORGANIZATION OF THE BUILDING - PASSENGER TRAFFIC FLOWS

In the central building of the terminal facilities are located:
- Domestic ferry traffic,
- International ferry traffic,
- Traffic cruisers (Transit and / or starting / incoming).

Next to the central building is the maritime border crossing Zadar: Permanent border crossing for international passenger and freight traffic in maritime transport (intermediate size) Zadar.

Departure / passenger boarding domestic and international ferry traffic

From the system of public roads travelers come to the main entrance to the building (by public transportation, taxi, car or pedestrian). Vehicles for international ferry traffic control cards and passport and customs go to the permanent border crossing for international passenger and freight traffic in maritime transport. Domestic and international ferry traffic passengers are entering to the building in the main entrance hall. In addition passengers of domestic ferry traffic can smoothly reach the ferry to the original solution designed without entering the building.

The traffic flows of passengers of domestic and international ferry traffic are separating in the entrance hall. For the purposes of the domestic ferry traffic passengers have facilities to island ferry terminal on the ground floor and on the 1st floor of the building.

Passengers of international ferry traffic after buying tickets or check-in, undergo a security control (provided there is space for four large stationary scanner) and passport control. They’re waiting call for the departure Hall (under control) where boarding pass control before going to the international ferry. The departure hall has content that facilitate waiting (coffee bar, sanitary facilities) and spaces for the work of the police and customs (offices and booth). Boarding passengers on international ferry takes place on the way to the entrance of the controlled area of the port (the ISPS system) protected pedestrian corridor comes to your ferry or by organized transport provided by the concessionaire of transportation (bus or the like). Walking path must be clearly marked according to the regulations so that in no case does not endanger the traveler (as it has to go with the loading lanes for vehicles on ferries).

Arrival / disembarkment passengers of domestic and international ferry traffic

Domestic ferry traffic passengers smoothly disembark according to the original project.

Passengers of international ferry traffic in the car according to the original project passing control to the permanent border crossing for international passenger and freight traffic in maritime transport.

Pedestrian passengers disembarking from international ferry coming to the entrance hall of the international ferry traffic on foot through the pedestrian corridor marked and secured by law or by organized transport provided by the concessionaire of transportation (bus or the like). At the exit of the incoming hall pass passport control. After passing customs control areas, which is common with travelers coming from cruisers. With the premises of the police house and customs control offices for customs and police as listed in their program. Then the passengers out through the main exit and continue your way on foot or by public transport or by car. All the time international ferry passengers have theirs luggage with them.

Departure / embarkement passenger traffic cruisers

Passenger traffic cruisers can be transit or Home / Port. In any case, if they use the building to go to cruise all passengers undergo the same system of passport control and customs, and security.

From the system of public roads passengers come to the main entrance to the building: public transportation, taxi, cars or as pedestrian. The area in front of the building ensures a free flow of passengers and baggage as are provided with the necessary facilities for all types of traffic.
At the entrance to the building to traffic cruise passengers checked the luggage through oversize big scanners. It is planned to use 2 large stationary scanners for baggage passenger cruise ships. This luggage is sorted in the sorting area, and means for boarding the cruise ship. Luggage is transported in a manner to be determined by the concessionaire to the cruise where they boarded the ship. If you do not pass the security check with the scanners is a place for keeping and detailed overview of such baggage. A detailed review is carried out as it identifies the passenger whose luggage it.

On a personal hand baggage passenger then passes control back (provided the space for 6 small scanners). Then the passengers via the stairs or elevators moving staircase are coming on the 1st floor to the space outgoing hall where they undergo the check-in and passport control and customs before leaving the pier. They go through the stairs, elevators and moving stairways to level of pier in the fenced area from the rest of the traffic loading of tape according to the ISPS system. For the first phase is planned to board from pier level. For the second phase of the preliminary design is given the option of building a skyway to the needs of cruisers. In this case, embarkation can be solved with "gangway".

Arrival / disembarkation of passengers from cruisers

Passenger traffic cruisers can be transit or Home / Port. In both cases, if they use the building to go to cruise all passengers undergo the same system of passport control and customs and security. Transit passengers of cruise ships in an organized field trip leaving on a trip with the cruise boarding at the pier on public transport or a taxi and passing control to the permanent border crossing for international passenger and freight traffic in maritime transport.

The cruise ship passengers descend to pier level. Directly from the boat big luggage, in a manner determined by the concessionaire, is transported to the luggage hall where is marked in specificities color system waiting to assume owners. From the pier level passengers, before the fence, went through the stairs, elevators and escalators, climb to the level of the incoming hall. There they undergo passport control and by the stairs, the elevator or escalator descending into hall to collect luggage. There, take your luggage and the space joint customs control at the main exit of the building still continue your journey by public transport or by car.

In 2nd stage passengers from cruise ship from coming into the building through a skyway to the 1st floor level to the arrival hall, and still undergo as already described. Transit passengers alike undergo through the building to the space where they can be used in public transport taxi or hire other form of transportation. In addition to the luggage hall gage there is a possibility of direct check-in to the airport.

The crew from cruisers

Area for the crew of cruisers is determined by the incoming hall space of cruisers on the ground floor with facilities that are appropriate for them. Entrance to the area is before police controls in the controlled zone.

4) PERMANENT BORDER CROSSINGS FOR INTERNATIONAL TRAFFIC OF PASSENGERS AND GOODS IN MARITIME TRANSPORT

Border crossing is defined in basic project. In this Amendments to the preliminary design compliant content and user surface area of customs and police from their program. Traffic flows have remained under the original project.

5) DESIGN

All activities are planned in the central terminal building divided into several space - functional units:
- Domestic ferry traffic
- International ferry traffic
- Transport of cruisers (Transit and / or starting / incoming)
- A Permanent border crossing for international passenger and freight traffic in maritime transport to areas of customs and police
- Privat user: Port of Zadar, Harbour Master, JADROLINIJA Ltd., dispatching-State, central control and monitoring system, areas of video surveillance and fire alarm systems, technical rooms of various facilities related to infrastructure building.

Basic requirements for the design of the building are defined in basic project and built part. The basic idea is that the building clearly reflects its purpose and functionality. For this reason, set the basic volumes: domestic traffic, international traffic and border crossing in maritime transport. They combine traffic routes in the central mass of the building. The building has a height of P + 1 about 12 m. The dynamics of the building defines a low altitude and variety of purpose integrated into the whole individual volumes.

6) STRUCTURE

Central building of the terminal is designed as a two-story building (GF + 1), situated along the operative coast, with total height (from bottom of foundations to highest point of structure) of 14 m. It has an irregular floor plan, with dominant axis along NW-SE line, about 340 m long and 48 m wide in the central part of the building. Bearing structure is divided into six dilatations. Main bearing structure is consisted of reinforced concrete columns with rectangular cross section 65x65 cm and reinforced concrete stairway cores with 40 cm thick walls, mutually connected with stiff reinforced concrete slabs with various thicknesses. Primary raster of columns has 7 x 7 m spans with 25 cm thick RC slab and 35 cm thick 2,50 x 2,50 m haunches above the columns. Beams are formed on the edges of the slab. On the part of the building where 7 x 14 m column raster is designed, RC beams are placed on 14 m spans which accomplishes one way spanning of the RC slab across 7 m span. Where column raster is variable with 11.95 – 4.95 – 9.90 – 9.90 m spans in transverse direction, with regular spans of 7 m longitudinally, RC slab is thickened to 60 cm on 200 cm wide strips above the columns in longitudinal and transverse direction. The building bridges the traffic areas on three different locations where ground floor is transparent and first floor is closed. Floor structure of these positions is designed as a beam grillage, with beams in transverse and longitudinal direction which support the thin RC slab. Roof slab has a larger floor plan than the inter-story floor slab because it covers the two-story porch. The porch is supported by slant columns which compose a two-story tall linear truss, resembling 'Warren truss'. Foundations are consisted of individual footings 3,0 x 3,0 x 1,0 m, mutually connected with foundation strips.

The facades
The facades of the central terminal building are defined by the rhythm of grid facade glazing with adequate protection from the sun (sun breakers or the like.) And strokes full fill. Towards OTT, and the main entrance facade is drawn with canopy that protects against excessive insolation. The facades of the border crossing are defined by the grid with fully filled and glazed with protection from overexposure to sunlight. The areas where the deck is installed technical equipment adequately separated panels for noise protection facilities building.

The roof
The roof is designed as a flat impervious roof with secured access for servicing the equipment installed on the roof. Technical equipment for ensuring the microclimate of the building located on the roof in a manner that is above every area of the system.
Floor
The floors in the building will be finished with a floating self-leveling coatings, ceramic tiles, stone and/or laminates depending on the application area. Outdoor spaces will be finished coated components and slabs of concrete or stone. In doing so, will be met essential conditions of safety and rational maintenance.

Internal walls
The concept of the building is such that the space within the forming spaces through its walls which allow a high level of flexibility during the use of the building. Side walls of different users will be masonry.

The ceiling
The ceilings in the office area will be as false ceiling corresponding characteristics. Surface structures that do not coat the plates will be final smoothed and painted.

The isolation
The building will be waterproofed. Special attention will be paid to waterproofing dilation. Thermal insulation of walls and roof will be carried out according to the regulations.

Interior and exterior doors and hardware
Doors and windows on the facades will be in the lining of the facade. Interior doors will be the

7) SITE ORGANIZATION
The central terminal building fits into the existing building. The original project has defined the concept design of the building plot. Amending the preliminary design is changed (adjusted) in the scope of regulation amendments.
Landscape design area is shown in the original project. The aim of the project is the formation of the urban landscape in a way that first of all functional and thematic should guarantee experiential impact and recognizable locations with a focus on protecting and improving the ecological and visual quality of the area.

Entrance area of the building and parking
Entrance flatbed of the central building is organized according to basic design and adding a building with one lane for traffic and keeping cars on arrival / departure passenger car. Traffic purpose and organization is according to primary project. In front of the building is kept open parking lot to the original project.
It is planned to provide 119 parking places (PM) next to the building, and in addition to the temporary parking lot 386 PM or in the final solution 458 PM. Because it is a functional block diagram of the building adapted to the new Terms of Reference provides for the possibility of building a temporary car park on the site of the planned construction of a commercial center. Once done that parking can be a function of the time they are issued Executive Building permits for the commercial center. Parking would be performed at the existing level terrain. Temporary parking will be under the supervision of and surrounded by a fence height of 2 m. On the issue of executive Building permits for the commercial center would remove a set of temporary parking; in parallel with the removal of a temporary parking lot is necessary to build parking on the maritime domain. Accessibility for people with disabilities and reduced mobility the central terminal building provided the necessary conditions for accessibility to people with disabilities and reduced mobility in accordance with the Ordinance on ensuring accessibility of buildings to persons with disabilities and reduced mobility (Official Gazette 78/13).
8) CONDITIONS FOR CONSTRUCTION SITE CONNECTION TO ROADS AND PUBLIC UTILITY INFRASTRUCTURE

Connecting the building plot on traffic area
Building is connect to district traffic areas, according to the original project. Amending the preliminary design custom connectors are engineered solutions building.

Connection to public utility infrastructure
The terminal is divided into sections which are secured by specific infrastructure systems:
- the central terminal building (consisting of domestic terminal traffic, the terminal for the international ferry traffic and terminals for cruiser traffic);
- Permanent border crossing maritime transport Zadar (middle).
Inside the building distribution and control and management of infrastructure systems for each user is planed separately.

Water and drainage

WATER SUPPLY SYSTEM
The water main is to be linked to the existing Ø200mm water pipeline. Water meter shaft is to be positioned outside the building and will accomodate water meters for sanitary purposes, outdoor hydrant network and sprinkler installation. An outdoor network of hydrants with both surface and underground hydrants has been placed around the planned building thus making the construction of a new network of outdoor hydrants unnecessary. The main water pipe for sanitary purposes leads through ground and floor from the water meter shaft to a vertical water supply pipe. The vertical water supply pipe leads up to the ground-floor ceiling under which a main drainage divide of sanitary water is positioned. From the main drainage divide placed under the ground-floor ceiling we lower down to sanitary facilities on the ground floor and then raise up to sanitary facilities on the upper floor. Water meters for controlling and measuring water flow are forseen for commercial buildings, the Customs and the Ministry of the Interior, while water consumption readings are obtained by an M-bus positioned in a highly visible and easily accessible spot located on the ground floor. Hot water is to be obtained via electric water heaters (boilers).

FIRE SAFETY
Fire safety of the location and building is to be secured by:
- existing network of outdoor hydrants
- network of indoor hydrants
- wall-mounted fire distinguishers
- stable installations of sprinkler system – separate map

SANITARY (WASTEWATER) DRAINAGE SYSTEM
Sanitary (wastewater) drainage system is to be positioned in the wall and in the floor reaching the main vertical wastewaters pipe. Every vertical sanitary (wastewater) pipe has its own deareator and pipe cleaners on the bottom. The main drainage divide runs in the floor of the ground floor to the existing outdoor internal sanitary (wastewater) drainage system. Wastewater of the restaurant kitchen is disposed to the oil and grease separator, after which water is purified and connected to the internal sanitary (wastewater) system.

GUTTER WATER DRAINAGE SYSTEM
Gutter water is disposed via an outlet system based on a vacuum principle (a Geberit Pluvia-like type) and connects to the existing internal storm water drainage system.
DRAINAGE SYSTEM FOR STORM WATER CONTAMINATED WITH OIL
The parking lot is to be drained via standard gutter inlets with settling pond. The gutter inlets connect to an internal storm water drainage system contaminated with oil that further connects to the existing street drainage system for storm waters contaminated with oil. The existing drainage system for storm waters contaminated with oil on the street leads on to the existing oil and petrol separator.

Electrical installation
By provided intervention in the area it is intended to build the central terminal building of Gaženica ferryboat terminal different than one for which a valid Building Permit has been obtained (Building Permit for central terminal building class: UP/I-361-03/11-01/192, No: 531-04-1-2-1-372-12-17, Zagreb, July 25th, 2012). With the change of location conditions it is necessary to obtain Amendment of the Location Permit. The shape and size of the building plot are previously defined (valid Location Permit) and do not change within Amendment of Preliminary Design. The central terminal building is a multifunctional facility which includes all the contents necessary for the operation of ferryboat terminal Zadar. All contents planned in the central terminal building are divided into several spaces - functional units. Central building will be consisted of ground and first floor. Within the building there will be areas for travelers and guests as well as spaces of Police and Customs (functionally separated). Within Amendment of this Preliminary Design two temporary transformer stations TS STRABAG GRADILIŠNA 1 10(20)/0,4kV, 2 x1000 kVA and TS STRABAG GRADILIŠNA 2 10(20)/0,4kV, 1 x1000 kVA constructed for construction site consumers power supply will be converted into permanent TS. These two TS are provided for power supply of consumers of the central building, Police, Customs and port. Substations remain the same dimensions and shapes according to the original project (detailed review in the Main Project). The changes that have main impact on the electro technical documents are related to the rationalization of electrical installations due to reduced area of the central terminal building and installation of the energy block with or inside the building. Power supply is provided from TS (transformer station or substation) to the corresponding main distribution cabinet (indoor control cabinet for protection and measurement) inside the building GRMO-1, GRMO-2 and GRMO-P. Two main distribution cabinets GRMO are provided for the power supply of consumers of central terminal building. The third main distribution cabinet GRMO-P is provided for power supply of Police and Customs. Every main distribution cabinet, GRMO-1, GRMO-2 and GRMO-P need to be accommodated within control room of space-functional unit in a way that does not compromise the functionality of the building concept. Access to these rooms should be provided for staff maintenance only, with a recommendation on settling distribution cabinets near the center position of the functional area which will be supplied from the concerned main distribution cabinet. Entire building will be divided into functional units like restaurants, boutiques, entrance/outgoing halls, post offices, banks, etc. Each unit will have its own distribution cabinet RP. It is necessary to provide measurement of power consumption for distribution cabinets RP of all functional units (spaces which are planned to granting into concession).
Measuring power consumption of each of main distribution cabinets is predicted in the building with the possibility of measurement within the corresponding TS with the consent of HEP Elektra Zadar. The exact location of accommodation individual TS and distribution of measuring cabinets GRMO will be determined in the capital or implementation project. Complete installation of ICT technology is provided to communication cabinets and extra racks placed inside the building via generic cabling installation using U/FTP CAT.6 and fiber optic. TV installation will be realized from TV antennas on the building roof to TV cabinets in technical rooms. Wiring of video surveillance system (for usage of IP cameras) is provided in facilities and areas for concessioning. In all areas of cash business (ticket sales, shops, etc.) anti-theft system is provided (combined with video surveillance system or independent). Alarm system can be combined along with central sound system which is provided for music and information for passengers.
For the purpose of fire protection there are lighting protection system (LPS), fire detection system (divided into two groups, Police and Customs and Port) and fire extinguishing system. Fire detection and fire extinguishing systems must have uninterruptable power supply and autonomous operation after facility remains without power supply from mains.

Mechanical installations - HVAC heating, ventilation, air conditioning and ventilation; gas installations

Energy sources for heating buildings are electricity and natural gas and for cooling electricity. The building will be connected to street gas distribution network. It is designed centralized system of heat supply from the boiler room. Preparation of heating hot water 70/50 °C shall be carried out by three hot water condensing boiler equipped with gas burners, every output of 800 kW, total power is 2 400 kW. Preparation of cold water 12/7 ° C will be performed using two chillers for outdoor installation, equipped with screw compressors and air-cooled condensers. Estimated required cooling capacity of building for cooling and air treatment within the air handling units and compact rooftop units is 3 480 kW. For the purposes of measurement of heat and cooling energy and cost accounting are set calorimeters.

Heating, cooling and ventilation of total space and the halls of the terminal will be performed using the compact rooftop units with heat pump. Heating and cooling of a commercial area, restaurants and offices will be performed by the installation of fan coils (four pipe), and with prepared air inside the air handling units. Air handling units will be predicted with plate recuperator or rotary regenerator (energy heat recovery from exhaust air from the building to the fresh outdoor air). Auxiliary facilities (changing rooms, toilets, storage, technical rooms) will be heated with radiators. Heating and cooling of the offices will be performed by four pipe fan coils. Forced ventilation in the kitchen is according to HACCP system and technology needs.

The heating, cooling and ventilation part of the building used by MUP (police) and customs will be released from the rest of the building. For the purpose of heating and cooling will be anticipated VRF system with heat pump and for ventilation will be anticipated air handling unit.

Fixed fire extinguishing systems scope:

Following fire extinguishing systems will be used:

- Sprinkler system for protection of whole building except permitted exceptions. Sprinkler will be designed according NFPA 13 standard.
- Novec 1230 system for protection of server rooms and rooms with high valuable electrical equipment. Novec 1230 system will be designed according to HRN EN 15004 standard.
- Ansul R-102 system for protection of commercial cooking equipment. Ansul R-102 system will be designed according to NFPA 17a / UL 300 standard.

Sprinkler system

Frost protected parts of the terminal will be protected with wet type sprinkler system. Terminal will be divided in sprinkler zones not bigger than 4831 sqm. Terminal will be designed as OH1 fire risk for passenger – handling areas and as OH2 for baggage - package areas and tenant areas.

Sprinkler will be feed from sprinkler water tank 150 m3 with two sprinkler submersible electric driven pumps.

Novec 1230 system

Single unit of Novec 1230 system will be designed. Two zone dependency fire alarm system will be used. If needed (because of air high velocity) Vesda air aspirating system will be used.

9) NETT AREA

The total net usable area in the Terms of Reference is defined as the sum of the surface area defined by the inner perimeter surface of the area included in the basic functional program (excluding the thickness
Design services for amendments of the Main Design Institut IGH, d.d. for the Central Terminal Building of the Zadar New Port Project

of the inner and outer walls and facades, internal and external communications, technical area for the infrastructure networks, such as the outer surface has balconies, galleries and terraces:

<table>
<thead>
<tr>
<th>NAME</th>
<th>NETO area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERMINAL BUILDING</td>
<td>15.112.10</td>
</tr>
<tr>
<td>Terminal building</td>
<td></td>
</tr>
<tr>
<td>Main hall</td>
<td>602.00</td>
</tr>
<tr>
<td>Commercial areas</td>
<td>2.189.20</td>
</tr>
<tr>
<td>Domestic terminal</td>
<td>349.40</td>
</tr>
<tr>
<td>International ferry terminal</td>
<td>1.853.30</td>
</tr>
<tr>
<td>Car passengers</td>
<td>86.70</td>
</tr>
<tr>
<td>Cruiser terminal</td>
<td>5.885.10</td>
</tr>
<tr>
<td>Office and private areas</td>
<td></td>
</tr>
<tr>
<td>PZA and others operator’s</td>
<td>526.80</td>
</tr>
<tr>
<td>JADROLINIJA and others operator’s</td>
<td>75.00</td>
</tr>
<tr>
<td>Concessionaire and others</td>
<td>153.20</td>
</tr>
<tr>
<td>Harbour Master</td>
<td>113.20</td>
</tr>
<tr>
<td>Office’s</td>
<td>146.40</td>
</tr>
<tr>
<td>Technical areas</td>
<td>300.00</td>
</tr>
<tr>
<td>Toilets for staff</td>
<td>163.60</td>
</tr>
<tr>
<td>Dockers - international traffic</td>
<td>79.30</td>
</tr>
<tr>
<td>Dockers - domestic traffic</td>
<td>85.10</td>
</tr>
<tr>
<td>Cruiser crew area</td>
<td>190.90</td>
</tr>
<tr>
<td>Police</td>
<td>371.50</td>
</tr>
<tr>
<td>International border crossing Zadar</td>
<td></td>
</tr>
<tr>
<td>Police</td>
<td>666.10</td>
</tr>
<tr>
<td>Custom</td>
<td>1.126.40</td>
</tr>
<tr>
<td>Booth’s Police&Custom</td>
<td>148.90</td>
</tr>
</tbody>
</table>

Gross building area of the Terminal building according to the Croatian law is approx. 18.381.54 m².

Zagreb/Zadar, 12.6.2015.

Institut IGH, d.d.

Designer:

Berislav Krtalić, dipl.ing.arh.